呀哈喽!这里是 alphardex。
最近我用 three.js 模拟了一下现实中的下雨效果,让我们一起来看看它是怎么实现的吧。
https://code.juejin.cn/pen/7200287096689393720
建模
首先我们需要一些贴图素材
贴图素材一般可以在3dtextures网站上找到,这里我找了 2 份,包含了墙的法线贴图和潮湿地面的法线、透明度、粗糙度贴图
通过kokomi.AssetManager将贴图素材一次性全部加载出来,将它们应用到Mesh上,加上基本的环境光照,即可完成最基本的建模
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
   |  const pointLight1 = new THREE.PointLight(config.color, 0.5, 17, 0.8); pointLight1.position.set(0, 2, 0); this.scene.add(pointLight1); ...
 
  const aspTex = am.items["asphalt-normal"]; aspTex.rotation = THREE.MathUtils.degToRad(90); aspTex.wrapS = aspTex.wrapT = THREE.RepeatWrapping; aspTex.repeat.set(5, 8);
  const wallMat = new THREE.MeshPhongMaterial({   color: new THREE.Color("#111111"),   normalMap: aspTex,   normalScale: new THREE.Vector2(0.5, 0.5),   shininess: 200, });
  const wall = new THREE.Mesh(new THREE.BoxGeometry(25, 20, 0.5), wallMat); this.scene.add(wall); wall.position.y = 10; wall.position.z = -10.3; ...
 
  const t3d = new kokomi.Text3D(this, config.text, font, {   size: 3,   height: 0.2,   curveSegments: 120,   bevelEnabled: false, }); t3d.mesh.geometry.center();
  const tm = new THREE.Mesh(   t3d.mesh.geometry,   new THREE.MeshBasicMaterial({     color: config.color,   }) ); this.scene.add(tm); tm.position.y = 1.54;
 
  | 
 

积水地面
地面上的积水能反射出周围的景色,因此我们将选用kokomi.Reflector来实现反射效果
1 2 3
   | const mirror = new kokomi.Reflector(new THREE.PlaneGeometry(25, 100)); mirror.position.z = -25; mirror.rotation.x = -Math.PI / 2;
   | 
 

普通的反射器仅仅是一面镜子,因此我们要自定义反射器的 Shader
涟漪效果
之前逛 shadertoy 时看到了一个很棒的涟漪特效,就直接拿来用了
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
   |  float hash12(vec2 p){     vec3 p3=fract(vec3(p.xyx)*.1031);     p3+=dot(p3,p3.yzx+19.19);     return fract((p3.x+p3.y)*p3.z); }
  vec2 hash22(vec2 p){     vec3 p3=fract(vec3(p.xyx)*vec3(.1031,.1030,.0973));     p3+=dot(p3,p3.yzx+19.19);     return fract((p3.xx+p3.yz)*p3.zy); }
 
  float map(float value,float min1,float max1,float min2,float max2){     return min2+(value-min1)*(max2-min2)/(max1-min1); }
  vec2 rippleUv=75.*p*uTexScale;
  vec2 p0=floor(rippleUv);
  float rainStrength=map(uRainCount,0.,10000.,3.,.5); if(rainStrength==3.){     rainStrength=50.; }
  vec2 circles=vec2(0.); for(int j=-MAX_RADIUS;j<=MAX_RADIUS;++j) {     for(int i=-MAX_RADIUS;i<=MAX_RADIUS;++i)     {         vec2 pi=p0+vec2(i,j);         #if DOUBLE_HASH         vec2 hsh=hash22(pi);         #else         vec2 hsh=pi;         #endif         vec2 p=pi+hash22(hsh);
          float t=fract(.8*iTime+hash12(hsh));         vec2 v=p-rippleUv;         float d=length(v)-(float(MAX_RADIUS)+1.)*t+(rainStrength*.1*t);
          float h=1e-3;         float d1=d-h;         float d2=d+h;         float p1=sin(31.*d1)*smoothstep(-.6,-.3,d1)*smoothstep(0.,-.3,d1);         float p2=sin(31.*d2)*smoothstep(-.6,-.3,d2)*smoothstep(0.,-.3,d2);         circles+=.5*normalize(v)*((p2-p1)/(2.*h)*(1.-t)*(1.-t));     } } circles/=float((MAX_RADIUS*2+1)*(MAX_RADIUS*2+1));
  float intensity=.05*floorOpacity; vec3 n=vec3(circles,sqrt(1.-dot(circles,circles)));
  vec2 rainUv=intensity*n.xy;
 
  | 
 

与地面结合
光有涟漪效果也不够,要将它与地面的贴图相结合起来
这里采用了自定义mipmap技术,利用kokomi.PackedMipMapGenerator生成了多个贴图的 mipmap
自定义 mipmap 除了能捆绑贴图外,还有个好处就是可以动态控制贴图的模糊程度
1 2 3 4 5 6 7
   | const mipmapper = new kokomi.PackedMipMapGenerator(); const mirrorFBO = mirror.getRenderTarget(); const mipmapFBO = new kokomi.FBO(this); mirror.material.uniforms.tDiffuse.value = mipmapFBO.rt.texture; this.update(() => {   mipmapper.update(mirrorFBO.texture, mipmapFBO.rt, this.renderer); });
   | 
 
1 2 3 4 5 6 7 8 9 10 11 12 13
   | vec2 p=vUv; vec2 texUv=p*uTexScale; texUv+=uTexOffset; float floorOpacity=texture(uOpacityTexture,texUv).r; vec3 floorNormal=texture(uNormalTexture,texUv).rgb*2.-1.; floorNormal=normalize(floorNormal); float roughness=texture(uRoughnessTexture,texUv).r;
  vec2 finalUv=reflectionUv+floorNormal.xy*uDistortionAmount-rainUv;
  float level=roughness*uBlurStrength;
  vec3 col=packedTexture2DLOD(tDiffuse,finalUv,level,uMipmapTextureSize).rgb;
   | 
 

下雨动画
生成雨滴
雨滴数量会很多,因此要用到THREE.InstancedMesh来生成实例化网格对象
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
   | const rain = new THREE.InstancedMesh(new THREE.PlaneGeometry(), rainMat, count); rain.instanceMatrix.needsUpdate = true;
  const dummy = new THREE.Object3D();
  for (let i = 0; i < rain.count; i++) {   dummy.position.set(     THREE.MathUtils.randFloat(-10, 10),     0,     THREE.MathUtils.randFloat(-20, 10)   );   dummy.scale.set(0.03, THREE.MathUtils.randFloat(0.3, 0.5), 0.03);   dummy.updateMatrix();   rain.setMatrixAt(i, dummy.matrix); } rain.rotation.set(-0.1, 0, 0.1); rain.position.set(0, 4, 4);
   | 
 
这里要注意一点:雨滴的方向是始终朝向用户的,为了达成这点就要用billboard方案来实现
1 2 3 4 5 6 7 8 9
   | vec3 billboard(vec3 v,mat4 view){     vec3 up=vec3(view[0][1],view[1][1],view[2][1]);     vec3 right=vec3(view[0][0],view[1][0],view[2][0]);     vec3 pos=right*v.x+up*v.y;     return pos; }
  vec3 billboardPos=billboard(transformed,modelViewMatrix); transformed=billboardPos;
  | 
 

下落动画
我们可以给雨滴赋予随机的高度和速度 attribute,并在顶点着色器中让它动起来
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
   | const progressArr = []; const speedArr = [];
  for (let i = 0; i < rain.count; i++) {   ...
    progressArr.push(Math.random());   speedArr.push(dummy.scale.y * 10); }
  rain.geometry.setAttribute(   "aProgress",   new THREE.InstancedBufferAttribute(new Float32Array(progressArr), 1) ); rain.geometry.setAttribute(   "aSpeed",   new THREE.InstancedBufferAttribute(new Float32Array(speedArr), 1) );
   | 
 
1 2 3 4 5 6 7 8 9 10 11 12 13
   | attribute float aProgress; attribute float aSpeed;
  uniform float uSpeed; uniform float uHeightRange;
  vec3 distort(vec3 p){     float y=mod(aProgress-iTime*aSpeed*.25*uSpeed,1.)*uHeightRange-(uHeightRange*.5);     p.y+=y;     return p; }
  transformed=distort(transformed);
   | 
 

反射效果
创建背景的离屏渲染 FBO,将其作为反射的主要材质
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
   | const bgFBO = new kokomi.FBO(this, {   width: window.innerWidth * 0.1,   height: window.innerHeight * 0.1, }); rainMat.uniforms.uBgRt.value = bgFBO.rt.texture;
  const fboCamera = this.camera.clone();
  this.update(() => {   rain.visible = false;   this.renderer.setRenderTarget(bgFBO.rt);   this.renderer.render(this.scene, fboCamera);   this.renderer.setRenderTarget(null);   rain.visible = true; });
  | 
 
在顶点着色器中获取屏幕空间vScreenspace
1 2 3 4 5 6 7 8 9
   |  vec2 screenspace(mat4 projectionmatrix,mat4 modelviewmatrix,vec3 position){     vec4 temp=projectionmatrix*modelviewmatrix*vec4(position,1.);     temp.xyz/=temp.w;     temp.xy=(.5)+(temp.xy)*.5;     return temp.xy; }
  vScreenspace=screenspace(projectionMatrix,modelViewMatrix,transformed);
 
  | 
 
在片元着色器中采样反射材质
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
   | uniform sampler2D uNormalTexture; uniform sampler2D uBgRt; uniform float uRefraction; uniform float uBaseBrightness;
  varying vec2 vScreenspace;
  void main(){     vec2 p=vUv;
      vec4 normalColor=texture(uNormalTexture,p);
      if(normalColor.a<.5){         discard;     }
      vec3 normal=normalize(normalColor.rgb);
      vec2 bgUv=vScreenspace+normal.xy*uRefraction;     vec4 bgColor=texture(uBgRt,bgUv);
      float brightness=uBaseBrightness*pow(normal.b,10.);
      vec3 col=bgColor.rgb+vec3(brightness);
      col=vec3(p,0.);
      gl_FragColor=vec4(col,1.); }
   | 
 
这里有一点要注意:积水地面中要把雨滴的反射去掉,不然会看着很乱
1
   | rainFloor.mirror.ignoreObjects.push(rain);
   | 
 

灯光闪烁
用setInterval来间歇地设置文字和灯光材质的颜色即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
   |  const turnOffLight = () => {   tm.material.color.copy(new THREE.Color("black"));   pointLight1.color.copy(new THREE.Color("black")); };
  const turnOnLight = () => {   tm.material.color.copy(new THREE.Color(config.color));   pointLight1.color.copy(new THREE.Color(config.color)); };
  let flickerTimer = null;
  const flicker = () => {   flickerTimer = setInterval(async () => {     const rate = Math.random();     if (rate < 0.5) {       turnOffLight();       await kokomi.sleep(200 * Math.random());       turnOnLight();       await kokomi.sleep(200 * Math.random());       turnOffLight();       await kokomi.sleep(200 * Math.random());       turnOnLight();     }   }, 3000); };
  flicker();
 
  | 
 

后期处理
为了让文字灯光看上去更加明亮,可以用Bloom滤镜来照亮文字
由于后期处理中原先 renderer 的抗锯齿会失效,故用SMAA滤镜来实现抗锯齿
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
   |  const composer = new POSTPROCESSING.EffectComposer(this.renderer); this.composer = composer;
  composer.addPass(new POSTPROCESSING.RenderPass(this.scene, this.camera));
 
  const bloom = new POSTPROCESSING.BloomEffect({   luminanceThreshold: 0.4,   luminanceSmoothing: 0,   mipmapBlur: true,   intensity: 2,   radius: 0.4, }); composer.addPass(new POSTPROCESSING.EffectPass(this.camera, bloom));
 
  const smaa = new POSTPROCESSING.SMAAEffect(); composer.addPass(new POSTPROCESSING.EffectPass(this.camera, smaa));
 
  | 
 

待优化
效果算是基本实现了,但也有很多待优化的点
- 添加现实中的雨声
 
- 实现更棒的相机交互
 
- 添加更多的物体
 
……
最后
希望本文能给你创作新特效的灵感,keep creating~